NPCC 2015 Contributors and Reviewers

New York City Panel on Climate Change
Cynthia Rosenzweig (Co-chair), NASA Goddard Institute for Space Studies and Columbia University, Earth Institute, Center for Climate Systems Research
William Solecki (Co-chair), Hunter College, City University of New York, CUNY Institute for Sustainable Cities
Reginald A. Blake, New York City College of Technology
Malcolm J. Bowman, Stony Brook University
Vivien Gornitz, Columbia University, Earth Institute, Center for Climate Systems Research
Klaus H. Jacob, Columbia University, Lamont-Doherty Earth Observatory
Patrick L. Kinney, Columbia University, Mailman School of Public Health
Howard Kunreuther, University of Pennsylvania
Yochanan Kushnir, Columbia University, Lamont-Doherty Earth Observatory
Robin M. Leichenko, Rutgers University
Ning Lin, Princeton University
Guy J.P. Nordenson, Princeton University
Michael Oppenheimer, Princeton University
Gary W. Yohe, Wesleyan University

New York City Government
Katherine Greig, New York City Mayor’s Office of Recovery and Resiliency
Leah Cohen, formerly New York City Mayor’s Office of Long Term Planning and Sustainability

Project Manager
Daniel Bader, Columbia University, Earth Institute, Center for Climate Systems Research

NOAA Consortium for Climate Risk in the Urban Northeast (CCRUN) Technical Team
Radley Horton (Lead), Columbia University, Earth Institute, Center for Climate Systems Research

CUNY Institute for Sustainable Cities (CISC) Technical Team
Lesley Patrick (Co-lead)
William Solecki (Co-lead)

Stevens Institute of Technology Technical Team
Alan Blumberg (Co-lead)
Philip Orton (Co-lead)

doi: 10.1111/nyas.12626
NPCC2 Work Groups

Climate Science: Daniel Bader, Reginald Blake, Vivien Gornitz, Radley Horton (Lead), Yochanan Kushnir, Christopher Little, Michael Oppenheimer, Cynthia Rosenzweig

Sea Level Rise/Coastal Storms and Flooding: Daniel Bader, Alan Blumberg, Vivien Gornitz, Radley Horton (Lead), Klaus Jacob, Ning Lin, Christopher Little, Michael Oppenheimer, Philip Orton

Mapping: Klaus Jacob, Guy Nordenson, Philip Orton, Lesley Patrick, William Solecki (Lead)

Health: Mark Arend, Patrick Kinney (Lead), Kim Knowlton, Jaime Madrigano, Thomas Matte, Elisaveta Petkova, Julie Pullen, Ashlinn Quinn, Kate Weinberger

Indicators and Monitoring: Mark Arend, Reginald Blake (Lead), Alex de Sherbinin, Wendy Dessy, Stuart Gaffin, Klaus Jacob, Kathryn Lane, Thomas Matte, Fred Moshary, Bernice Rosenzweig, Cynthia Rosenzweig, William Solecki, Geraldine Sweeney

Expert Reviewers

John M. Balbus, National Institutes of Health
Kenneth Broad, University of Miami
Virginia Burkett, United States Geological Survey
Brian A. Colle, Stony Brook University
Hannah M. Cooper, Florida Atlantic University
Kristie L. Ebi, ClimAdapt, LLC
Anthony C. Janetos, Boston University
Robert E. Kopp, Rutgers University
David C. Major, Columbia University
Nate Mantua, University of Washington
Gina Maranto, University of Miami
Kenneth G. Miller, Rutgers University
Adam Parris, National Oceanic and Atmospheric Administration
Kathleen J. Tierney, University of Colorado
Rae Zimmerman, New York University
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES

Issue: Building the Knowledge Base for Climate Resiliency

New York City Panel on Climate Change 2015 Report

Introduction

The climate of the New York City metropolitan region is changing—annual temperatures are hotter, heavy downpours are increasingly frequent, and the sea is rising. These trends, which are also occurring in many parts of the world, are projected to continue and even worsen in the coming decades because of higher concentrations of greenhouse gases in the atmosphere caused by burning of fossil fuels and clearing of forests for agriculture. These changing climate hazards increase the risks for the people, economy, and infrastructure of New York City. As was demonstrated by Hurricane Sandy, coastal and low-lying areas, the elderly and very young, and lower-income neighborhoods are highly vulnerable. In response to these climate challenges, New York City is developing a broad range of climate resiliency policies and programs, as well as the knowledge base to support them. The knowledge base includes up-to-date climate, sea level rise, and coastal flooding projections; a Climate Resiliency Indicators and Monitoring System; and resiliency studies. A special attribute of the New York City response to these challenges is the recognition that both the knowledge base and the programs and policies it supports need to evolve through time as climate risks unfold in the coming decades.

In early September 2012, just weeks before Hurricane Sandy hit, the New York City Council passed Local Law 42 that established the New York City Panel on Climate Change (NPCC) as an ongoing body serving the City of New York. The NPCC is required to meet at least twice each calendar year to review recent scientific data on climate change and its potential impacts, and to make recommendations on climate projections for the coming decades to the end of the century. These projections are due within one year of the publication of the Intergovernmental Panel on Climate Change Assessment Reports (http://www.ipcc.ch), or at least every three years. The NPCC also advises the Mayor’s Office of Sustainability and the Mayor’s Office of Recovery and Resiliency (ORR) on the development of a community- or borough-level communications strategy intended to ensure that the public is informed about the findings of the panel, including the creation of a summary of the climate change projections for dissemination to city residents.

Initially formed as a scientific panel in 2008, the first NPCC was comprised of academic and private-sector experts in climate science, infrastructure, social science, and risk management. It established a risk management framework for the city’s critical infrastructure throughout the extended metropolitan region under climate change. The first NPCC developed downscaled climate projections and derived new climate risk information, created adaptation assessment guidelines and protocols, and determined how climate protection levels would need to change to respond to evolving climate conditions (NPCC, 2010).

Following Hurricane Sandy, the City convened the Second New York City Panel on Climate Change (NPCC2) in January 2013 to provide up-to-date scientific information and analyses on increasing climate risks for the creation of A Stronger, More Resilient New York (City of New York, 2013). In response, the NPCC2 published the Climate Risk Information 2013 Report (CRI; NPCC, 2013) in June 2013 (http://ccrun.org/NPCC-2013). The Climate Risk Information 2013 Report presented quantitative and qualitative information about future climate hazards for the 2020s and 2050s, focusing on temperature, precipitation, and sea level, as well as providing future coastal flood risk maps.

doi: 10.1111/nyas.12625

This NPCC2 Report (NPCC, 2015) presents the full work of the NPCC2 from January 2013 to January 2015. The aim is to increase current and future resiliency of the communities, citywide systems, and infrastructure of New York City to a range of climate risks. NPCC2 follows the risk management and resilience approach developed by the first NPCC (Yohe & Leichenko, 2010). In this approach, climate hazards are extreme climatic or weather events that cause harm and damage, and climate risk is the product of the likelihood of a climate hazard occurring and the magnitude of consequences should that event occur. The NPCC 2010 Report found that climate risks are spatially varied across the city because different levels of vulnerability are present within and across communities and infrastructure systems, resulting in different outcomes. Recognizing that risk management strategies need to evolve through time in response to continuous climate risk assessment, the NPCC developed a flexible adaptation pathways approach to guide the city in developing greater resiliency (NPCC, 2010). The New York City flexible adaptation framework encompasses both adaptation and mitigation and enables the consideration of long-range goals as well as their translation into short-term objectives.

The NPCC uses the definition of the term resilience presented by the Intergovernmental Panel on Climate Change (IPCC) in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (Lavell et al., 2012), but with emphasis on improvement of city systems in contrast to their simple restoration.

“Resilience is the ability of a system and its component parts to anticipate, absorb, accommodate, or recover from the effects of a potentially hazardous event in a timely and efficient manner, including through ensuring the preservation, restoration, or improvement of its essential basic structures.”

The information in the NPCC2 Report has been co-generated by scientists, stakeholders, and decision-makers in New York City. The NPCC2 established Work Groups on Climate Science, Sea Level Rise/Coastal Storms and Flooding, Mapping, Health, and Indicators and Monitoring. Scientists and managers of critical city systems met in a series of stakeholder meetings and workshops to discuss climate risks and how they could best be understood and presented to aid in sound decision-making. Some of these diverse contributors are authors of the report’s chapters.

This volume is a continuation of the NPCC assessment process that began in 2008 with some significant advances that reflect the growing sophistication of climate science research and the evolving policy agenda to which it must respond. The report provides the City of New York with projections of its climate to the end of the century, both static and dynamic coastal storm surge modeling, and next steps in the development of an indicators and monitoring system for climate change impacts and adaptation. The assessment process is innovative because it looks beyond critical infrastructure and its vulnerability to climate change (a highlight of the first NPCC), and more directly focuses on what a more dynamic climate will mean for the everyday experience of the city’s residents—for example, regarding health impacts.

The report documents recent observed climate trends and extends the CRI 2013 projections to the 2080s and 2100 for temperature and precipitation (Chapter 1) and sea level rise (Chapter 2). It explains the spatial applicability of the projections to the wider New York metropolitan region and compares the NPCC2 methods to the recently published Fifth Assessment Report of the IPCC (IPCC, 2013). It presents new maps for the flood risks to the 2080s and 2100 for the current 100- and 500-year coastal flood eventa (Chapter 3). The report characterizes future coastal flooding through enhanced dynamic flood inundation (storm surge) modeling that includes the effects of sea level rise (Chapter 4) and provides a review of key issues related to climate change and health relevant to the citizens of New York City (Chapter 5). It then develops a process for establishing an indicators and monitoring system to track data related to climate hazards, risks, impacts, and adaptations, and presents metrics for evaluating the NYC Cool Roofs Program and its effect on the urban heat island (Chapter 6). The report ends with conclusions and recommendations.

aThe 100-year coastal flood event refers to the flood with a 1% annual chance of occurrence. The 500-year coastal flood event refers to the flood with a 0.2% annual chance of occurrence.
with regard to both increasing climate change resiliency for the city and advancing the research required to build it. The report includes two appendices that provide climate risk and projections infographics for stakeholders and technical details for each of the chapters.

Ongoing assessments such as those of the NPCC must be flexible in response to changing science and policy demands, yet also must provide a foundation for inter-assessment comparison and benchmarking through time. The NPCC2 assessment arose from the urgent post-Hurricane Sandy need for forward thinking on extreme events and resiliency. Implicit in its assessment approach is that as the new “normal” of climate non-stationarity\(^b\) emerges, so the way forward must be clear for developing a new and better knowledge base for policy (Solecki & Rosenzweig 2014; Rosenzweig & Solecki 2014).

Finally, the NPCC works to improve ways to communicate data and information on climate risks both to citizens and to potential users at multiple levels of government, including city, state, and national. While specific to New York City and its metropolitan region, the approaches developed by the NPCC can contribute to efforts to enhance resiliency as they are undertaken across governmental scales as well as in other locations.

Cynthia Rosenzweig and William Solecki

References

\(^b\)Stationarity is defined as having common statistical properties over time (e.g., mean, variance, and other statistics are all constant). Now that the climate system is changing, non-stationarity has become the new normal (Milly et al., 2010).
The climate of the New York metropolitan region is changing—annual temperatures are hotter, heavy downpours are increasingly frequent, and the sea is rising. These trends, which are also occurring in many parts of the world, are projected to continue and even worsen in the coming decades due to higher concentrations of greenhouse gases (GHGs) in the atmosphere caused by burning of fossil fuels and clearing of forests for agriculture. These changing climate hazards increase the risks for the people, economy, and infrastructure of New York City. As was demonstrated by Hurricane Sandy, populations living in coastal and low-lying areas, the elderly and very young, and lower-income neighborhoods are highly vulnerable. In response to these climate challenges, New York City is developing a broad range of climate resiliency policies and programs as well as the knowledge base to support them.

Initially formed as a scientific panel in 2008, the first New York City Panel on Climate Change (NPCC) was comprised of academic and private sector experts in climate science, infrastructure, social science, and risk management. It established a risk-management framework for the city’s critical infrastructure throughout the extended metropolitan region under climate change (NPCC, 2010). Following Hurricane Sandy, the City convened the Second New York City Panel on Climate Change (NPCC2) in January 2013 to provide up-to-date scientific information and analyses on climate risks for the creation of A Stronger, More Resilient New York (City of New York, 2013). This report (NPCC, 2015) presents the work of the New York City Panel on Climate Change from January 2013 to January 2015.

The report documents recently observed climate trends and climate projections for the New York metropolitan region up to 2100. It compares the NPCC2 methods and projections for the local scale to those done at the global scale by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2013). The report presents new maps that show increasing flood risks due to climate change defined for the 100- and 500-year coastal flood event in the 2020s, 2050s, 2080s and 2100. It compares future coastal flooding simulated by static and dynamic modeling that include the effects of sea level rise. The report reviews key issues related to climate change and health relevant to the citizens of New York City and sets forth a process for developing a system of indicators and monitoring to track data related to climate change hazards, risks, impacts, and adaptation strategies. Research needs and recommendations for climate resiliency are provided.

Climate observations and projections

Observations show that temperatures and precipitation in New York City are increasing. In the New York metropolitan region, projections from global climate models (GCMs) indicate significant future changes in temperature and precipitation, and thus the potential for large impacts. Reducing greenhouse gas emissions now will reduce the likelihood of more extreme climate risks in the future.

Observations

- **Mean annual temperature** has increased at a rate of 0.3°F per decade (total of 3.4°F) over the 1900 to 2013 period in Central Park, although the trend has varied substantially over shorter periods.
- **Mean annual precipitation** has increased at a rate of approximately 0.8 inches per decade (total of 8 inches) over 1900 to 2013 in Central Park. Year-to-year (and multi-year) variability of precipitation has also become more pronounced, especially since the 1970s.

The 100-year coastal flood event refers to the flood with a 1% annual chance of occurrence. The 500-year coastal flood event refers to the flood with a 0.2% annual chance of occurrence.
Future projections
Climate change is extremely likely\(^1\) to bring warmer temperatures to the New York metropolitan region.

\(^1\)Probability of occurrence and likelihood defined as (IPCC, 2007): virtually certain, > 99% probability of occurrence; extremely likely, > 95% probability of occurrence; very likely, > 90% probability of occurrence; likely, > 66% probability of occurrence; more likely than not, > 50% probability of occurrence; about as likely as not, 33% to 66% probability of occurrence.

Likelihoods are assigned for the direction and characterization of change of projected climate hazards based on observations, model projections, physical understanding, literature review, and expert judgment.

\(^2\)The two thick lines show the average for each representative concentration pathway (RCP) across the 35 global climate models (GCMs). Shading shows the middle range (25th to 75th percentile). The bottom and top lines respectively show each year’s low-estimate and high-estimate projections across the suite of simulations. A 10-year smoothing filter has been applied to the observed data and model output. The dotted area between 2007 and 2015 represents the time period that is not covered because of the smoothing procedure.

\(^3\)Middle range (25th to 75th percentile) of model-based projections.

\(^4\)Specific quantitative projections are not assigned a likelihood due to uncertainties in future greenhouse gas concentrations, sensitivity of the climate system to changes in greenhouse gases, climate variability, and changes in regional and local processes.

\(^5\)The NPCC defines heat waves as three or more consecutive days with maximum temperatures at or above 90°F. Extreme precipitation days are defined as days with total precipitation of 1 inch or more.

- **Mean annual temperatures** are projected by GCMs to increase by 4.1 to 5.7°F\(^6\) by the 2050s and by 5.3 to 8.8°F by the 2080s.\(^c\)

Total annual precipitation will likely increase.

- **Mean annual precipitation** increases projected by the GCMs are 4 to 11 percent by the 2050s and 5 to 13 percent by the 2080s.

Heat waves and extreme precipitation days\(^f\) are also very likely to increase.

- The frequency of **heat waves** is projected to triple by the 2080s, and extreme cold events are projected to decrease.
- The frequency of **extreme precipitation days** is projected to increase, with approximately one and a half times more events per year possible by the 2080s compared to the current climate.

Figure ES.1 shows observed annual trends and future projections for temperature and precipitation in New York City. The range of NPCC2 projections increases to the end of the century.

Sea level rise and coastal storms

Sea level rise in New York City is a significant hazard, increasing the risks posed to coastal communities, infrastructure, and ecosystems.
Observations

- **Sea level rise** in New York City has averaged 1.2 inches per decade (total of 1.1 feet) since 1900, nearly twice the observed global rate of 0.5 to 0.7 inches per decade over a similar time period.

Projections

Sea level rise in New York City is projected to continue to exceed the global average. Sea level rise is very likely to accelerate as the century progresses.

- Projections for **sea level rise** in New York City are 11 to 21 inches by the 2050s, 18 to 39 inches by the 2080s, and could reach as high as 6 feet by 2100.

It is virtually certain that sea level rise alone will lead to an increased frequency and intensity of coastal flooding as the century progresses.

- Projected sea level changes alone would increase the frequency and intensity of **coastal flooding**, leading to (absent any change in storms themselves) between a doubling and an approximately 10- to 15-fold increase in the frequency of the current 100-year coastal flood by the 2080s.

Figure ES.2 shows the observed trend and future projections for sea level rise in New York City. The NPCC2 projections take global and local components into account.

Projected changes in the frequency and intensity of coastal storms are uncertain at local scales. The two types of storms with the largest influence on the coastal areas of the New York metropolitan region are tropical cyclones (hurricanes and tropical storms) and nor’easters.

- It is more likely than not that the number of the **most intense hurricanes** will increase in the North Atlantic Basin, along with extreme winds associated with these storms.
- As the ocean and atmosphere continue to warm, **intense precipitation from hurricanes** in the North Atlantic Basin is more likely than not to increase.
- It is currently not known how **nor’easters** in the New York metropolitan region may change in the future.

Static coastal flood mapping

Mapping climate hazards is an essential part of an overall risk management strategy for densely populated urban areas such as the New York metropolitan region. The strength of a flood-mapping tool...
Figure ES.3. Potential areas that could be impacted by the 100-year flood in the 2020s, 2050s, 2080s, and 2100 based on projections of the high-estimate 90th percentile NPCC2 sea level rise scenario. Map developed using the static approach. Note: This map is subject to limitations in accuracy as a result of the quantitative models, data sets, and methodology used in its development. The map and data should not be used to assess actual coastal hazards, insurance requirements, or property values or be used in lieu of FIRMS issued by FEMA. The flood areas delineated in no way represent precise flood boundaries but rather illustrate three distinct areas of interest: (1) areas currently subject to the 100-year flood that will continue to be subject to flooding in the future; (2) areas that do not currently flood but are expected to potentially experience the 100-year flood in the future; and (3) areas that do not currently flood and are unlikely to do so in the timeline of the climate scenarios used in this research (end of the current century).

depends on the quality of the underlying data and the techniques used for presentation. The updated future 100-year and 500-year flood maps by the NPCC2 show large-scale coastal vulnerability.

- Higher sea level elevations result in greater floodplain areas, with the extent of landward flooding dependent on elevation and slope of land, presence of man-made structures, permeability of soils, vegetation, and other impediments to movement of water.
- For the 100-year flood, sea level rise by 2100 roughly doubles the affected area compared to the December 2013 FEMA Preliminary Flood Insurance Rate Maps (FIRMs); for the 500-year flood, sea level rise by 2100 increases the affected area by 50% compared to the December 2013 FEMA FIRMs 500-year flood area.
- Queens is the borough with the most land area at risk of future coastal flooding due to sea level rise, followed by Brooklyn, Staten Island, the Bronx, and Manhattan.
Dynamic modeling of future coastal flood hazards

Sea level rise interacts with coastal storms to cause increased flood heights and expanded floodplains. The static approach to projecting coastal flooding adds sea level rise onto current storm tide levels, and dynamic models capture the roles of friction and wind as well as sea level rise and tides.

- NPCC2 results generally support the finding that both static and dynamic modeling approaches are valid and reliable approximations of coastal flooding for most locations in the New York metropolitan region.
- For results with hurricanes only, the static approach projects lower coastal flood heights and reduced flood zone areas for several locations in the New York metropolitan region, compared to results of the dynamic modeling approach.
- Many sources, including sea level rise, type of storm, errors in elevation data, and statistical methods, contribute to uncertainties in coastal flooding projections.

Figure ES.4 illustrates the differences between the dynamic and static approaches for the 100-year flood elevations for the 2050s, using the NPCC2 90th percentile sea level rise projections.

Public health impacts and resiliency

New York City faces potential health risks related to two principal climate hazards: increasing temperatures and heat waves and coastal storms with flooding, as well as a range of secondary hazards related to air pollution, pollen, vector-borne diseases, and water/food-borne illnesses. Recent experience from Hurricane Sandy and other extreme events has clearly demonstrated that the health of New Yorkers can be compromised by these hazards.

- Health impacts from exposure to extreme weather events include direct loss of life, increases in respiratory and cardiovascular diseases, and compromised mental health. The risk of these impacts is projected to increase in the future.
- Rising temperatures over the coming century are projected to increase the number of heat-related deaths that occur in Manhattan. However, uncertain future trends in the use of home air conditioning, improved population health, and better air quality during heat waves make it difficult to predict the magnitude of these increases.
- The health impacts of Hurricane Sandy varied across the city considerably due to local effects of storm and tidal surges, differing housing types, the degree to which energy, water, and/or transportation infrastructure was disrupted, and the underlying health and resilience factors of the affected population.
- Vulnerable groups include the old and the very young; women; those with preexisting physical, mental, or substance-abuse disorders; residents of low-income households; members of disadvantaged racial/ethnic groups; workers engaged in recovery efforts; and those with weak social networks.

Figure ES.5 shows projected increases in heat mortality in New York City for two GHG emissions scenarios (A2 and B1).

Indicators and monitoring

Climate change indicators are defined as empirically based quantities that can be tracked over time...
to provide relevant information for stakeholder decisions on climate resiliency and on the efficacy of resiliency measures to reduce vulnerability and risk. The three main categories of climate change indicators are (1) physical climate change variables; (2) exposure, vulnerability, and impact metrics; and (3) adaptation measures and their effectiveness.

- New York City maintains an extensive set of indicators and monitoring programs that can be harmonized and expanded to provide targeted information about current and emerging climate risks, impacts, and adaptation. This will provide key information for climate resiliency decision-making in regard to critical infrastructure, ecosystems, and health.
- Building on current tracking efforts, New York City is well placed to develop an expanded Climate Resiliency Indicators and Monitoring System for the New York metropolitan region.
- Developing an effective indicators and a monitoring system involves seven steps, which include interacting with stakeholders to ascertain information needs and key decisions; determining what data are available; developing a preliminary set of indicators; presenting indicators to stakeholders for feedback; revising preliminary indicators based on stakeholder input; setting up and maintaining the monitoring system; and conducting indicator evaluations through time to track general trends and to evaluate specific adaptation interventions.
- The NYC Cool Roofs Program provides a valuable testbed for the establishment of indicators and monitoring systems for tracking the effectiveness of adaptation measures.

An example of data tracked as part of the NYC Cool Roofs Program is shown in Figure ES.6, which illustrates that white roofs are more effective than black roofs in reducing peak temperatures.

Research needs

There is a need for ongoing research across a broad spectrum of areas in order to provide the people of New York City and the surrounding metropolitan region with the knowledge required to enhance climate resiliency through the coming decades. Economic studies of potential damages and costs of adaptation are critical to provide the knowledge base needed for wise climate change policy. It is important that budgetary resources are focused on building the scientific basis for resiliency planning.

Climate

Although there is a growing understanding of how the New York metropolitan region as a whole may be impacted by climate change, more research is needed on neighborhood-specific hazards and impacts. High-resolution regional climate modeling is needed to illuminate how projected changes vary throughout the city due to factors including coastal breezes, topography, and different urban land surfaces.

Sea level rise and coastal storms

More research is needed on how the Greenland and West Antarctic ice sheets will respond to climate change because these ice sheets are the largest long-term source of “high-end” sea level rise uncertainty. Future research efforts should also explore the
relationships among the different sea level rise components as well as the relationships between those sea level rise components and coastal storm risk in the Northeast. An additional key area of study is how coastal storms may change in the future.

Static coastal flood mapping
Future work should focus on quantifying the sources of uncertainty in the datasets used to develop flood maps, on the mapping process, and on displaying these uncertainties on the maps themselves. An overall flood vulnerability index that combines both social and biophysical vulnerability should be utilized because it can characterize site-specific levels of risk to flood hazards. This will also help to identify communities in the New York metropolitan region that may require special attention, planning efforts, and mobilization to respond to and recover from disasters and hazards.

Dynamic coastal flood modeling
More research should be done on historical events and on probabilistic hazard assessment methods to identify and reduce the uncertainty in defining flood hazards for the New York metropolitan region. Investigations are needed of the local geographical and storm conditions that lead to different flood heights in static and dynamic models. Studies should explore the comparability between the use of the static and dynamic approaches to projecting coastal zone flooding.

Public health impacts and resiliency
Additional knowledge will be essential for New York City to anticipate and avoid future health impacts from extreme weather events in a changing climate. Key areas include understanding the factors that lead to unhealthy levels of exposure to heat inside New York City apartment buildings, where most deaths occur during heat events. Research is needed to analyze the health impacts resulting from climate adaptation and mitigation measures, including effects on indoor air quality. Actions that result in climate adaptation and mitigation co-benefits including positive health outcomes are particularly important to identify.

Indicators and monitoring
Studies are needed to identify opportunities where existing monitoring systems in the New York metropolitan region can easily be enhanced for climate change and situations where more extensive

Figure ES.6. Surface temperatures for a freshly painted white roof compared to those of a control black roof at the Museum of Modern Art, Queens, NY. Source: Gaffen et al., 2012.
adjustments are needed. Focused analyses should be conducted on the identification of urban system tipping points in response to stresses in order to enhance capacity for early action.

Recommendations for climate resiliency

Although there remain significant uncertainties regarding long-term climate change, the NPCC 2015 report supports the large body of evidence indicating that decision-makers are better served by consideration of the future climate risks rather than reliance on the climate of the past in development of resiliency and rebuilding programs. Specific recommendations for climate resiliency include:

- Continue to follow the risk-based Flexible Adaptation Pathways approach to climate resiliency, set forth by the NPCC in 2010. This approach enhances the ability of the region to periodically assess, adjust, and tailor future development plans under changing climate conditions, updated by the NPCC as mandated by New York City’s Local Law 42.
- Make progress on achieving the initiatives in A Stronger, More Resilient New York (City of New York, 2013). Because of the short- and long-term challenges posed by increasing risks of temperature extremes, heavy downpours, and coastal flooding, these need to be strengthened and expanded to the entire New York metropolitan region.
- An integrated approach that includes engineering, ecosystems, and social strategies is vital to ensuring climate resiliency in the coming decades. Land use planning for sustainable infrastructure systems, particularly in coastal zones and low-lying areas, is especially important.
- At the same time, develop and support programs and policies (such as One City: Built to Last; City of New York, 2014) that work to reduce GHG emissions in order to limit the rate of future climate change and the magnitude of the associated risks. Consider co-benefits of adaptation and mitigation.
- Establish the New York City Climate Resiliency Indicators and Monitoring System. Associated Working Groups should be convened to develop and analyze key information for decision-making on critical infrastructure, ecosystems, and health. Build wider networks to monitor indicators and actively support their operation and long-term maintenance throughout the New York metropolitan region.
- Coordinate with state and federal partners on climate change projections and resiliency programs such as Rebuild by Design and the U.S. Army Corps of Engineers North Atlantic Comprehensive Study. FEMA should incorporate local sea level rise projections into its coastal flood methodology and mapping. This enables residents as well as planners to utilize the best available information as they develop and implement climate resiliency strategies.
- While the 100-year coastal flood is widely used to inform decision-making, other risk thresholds should be examined to improve risk-reduction decisions in the future. The goal is dynamic performance-based risk management across a range of probabilistic hazards established for current and future climates.

Throughout all of the above activities:

- It is essential to facilitate an ongoing and continuous process of stakeholder–scientist interactions, with cross-linkages between the NPCC, other experts, the City, the other municipalities of the New York metropolitan region, New York State, relevant agencies of the federal government, and the U.S. National Climate Assessment.

Collaboration across multiple scales of government will help to ensure that the climate science developed for the New York metropolitan region informs and draws from the best available information, thereby positioning residents and planners to confront expected future changes in the most effective way possible.

References

